InGaAsPas a Promising Narrow Band Gap Semiconductorfor Photoelectrochemical Water Splitting

2019 
While photoelectrochemical (PEC) water splitting is a very promising route toward zero-carbon energy, conversion efficiency remains limited. Semiconductors with narrower band gaps can absorb a much greater portion of the solar spectrum, thereby increasing efficiency. However, narrow band gap (∼1 eV) III–V semiconductor photoelectrodes have not yet been thoroughly investigated. In this study, the narrow band gap quaternary III–V alloy InGaAsP is demonstrated for the first time to have great potential for PEC water splitting, with the long-term goal of developing high-efficiency tandem PEC devices. TiO2-coated InGaAsP photocathodes generate a photocurrent density of over 30 mA/cm2 with an onset potential of 0.45 V versus reversible hydrogen electrode, yielding an applied bias efficiency of over 7%. This is an excellent performance, given that nearly all power losses can be attributed to reflection losses. X-ray photoelectron spectroscopy and photoluminescence spectroscopy show that InGaAsP and TiO2 form a t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    11
    Citations
    NaN
    KQI
    []