Os Doping Suppressed Cu-Fe Charge Transfer and Induced Structural and Magnetic Phase Transitions in LaCu3Fe4-xOsxO12 (x = 1 and 2).

2021 
B-site Os-doped quadruple perovskite oxides LaCu3Fe4-xOsxO12 (x = 1 and 2) were prepared under high-pressure and high-temperature conditions. Although parent compound LaCu3Fe4O12 experiences Cu-Fe intermetallic charge transfer that changes the Cu3+/Fe3+ charge combination to Cu2+/Fe3.75+ at 393 K, in the Os-doped samples, the Cu and Fe charge states are found to be constant 2+ and 3+, respectively, indicating the complete suppression of charge transfer. Correspondingly, Os6+ and mixed Os4.5+ valence states are determined by X-ray absorption spectroscopy for x = 1 and x = 2 compositions, respectively. The x = 1 sample crystallizes in an Fe/Os disordered structure with the Im3 space group. It experiences a spin-glass transition around 480 K. With further Os substitution up to x = 2, the crystal symmetry changes to Pn3, where Fe and Os are orderly distributed in a rocksalt-type fashion at the B site. Moreover, this composition shows a long-range Cu2+(↑)Fe3+(↑)Os4.5+(↓) ferrimagnetic ordering near 520 K. This work provides a rare example for 5d substitution-suppressed intermetallic charge transfer as well as induced structural and magnetic phase transitions with high spin ordering temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []