Enhancement mechanism of photocatalytic activity for MoS2/Ti3C2 Schottky junction: Experiment and DFT calculation

2021 
Abstract It is very significant to boost separation efficiency of photoinduced charge carriers and to extend absorption light range from ultraviolet light into visible light region for photocatalysts. Here, Ti3C2 incorporation boosted the separation efficiency of photogenerated carriers of MoS2, extended absorption light region, heightened the absorption intensity of visible light, and enhanced photocatalytic stability. The rhodamine B (RhB) solution could be completely degraded using MoS2/Ti3C2 under visible light after only 30 min. The comparing evaluation of photocatalytic activity signified that the reaction kinetics of RhB photodegradation over MoS2/Ti3C2 increased 1.4 and 3 times under UV light and visible light irradiation, respectively. Experimental tests and density functional theory (DFT) calculation confirmed the formation of MoS2/Ti3C2 Schottky junction, in which Ti3C2 served as electron sink. The photogenerated electrons in MoS2 easily transferred to Ti3C2 phase due to driving force of built in electric field, which realized efficient separation of photocarriers and prolonged the life span of photoproduced holes. We sincerely hoped this catalyst could be widely applied in wastewater treatment field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []