Controlled growth of SrxBa1‐xNb2O6 hopper‐ and cube‐shaped nanostructures by hydrothermal synthesis

2020 
Controlling the shape and size of nanostructured materials has been a topic of interest in the field of material science for decades. In this work, the ferroelectric material SrxBa1-xNb2O6 (x = 0.32-0.82, SBN) was prepared by hydrothermal synthesis, and the morphology is controllably changed from cube-shaped to hollow-ended structures based on a fundamental understanding of the precursor chemistry. Synchrotron X-ray total scattering and PDF analysis was used to reveal the structure of the Nb-acid precursor, showing Lindqvist-like motifs. The changing growth mechanism, from layer-by-layer growth forming cubes to hopper-growth giving hollow-ended structures, is attributed to differences in supersaturation. Transmission electron microscopy revealed an inhomogeneous composition along the length of the hollow-ended particles, which is explained by preferential formation of the high entropy composition, SBN33, at the initial stages of particle nucleation and growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    2
    Citations
    NaN
    KQI
    []