PET [11C]acetate is also a perfusion tracer for kidney evaluation purposes

2019 
Abstract Rationale Renal positron emission tomography (PET) functional imaging allows non-invasive and dynamic measurements of functional and metabolic parameters. [15O]H2O is used as a perfusion tracer, and [11C]acetate as an oxidative metabolism in this purpose, requiring two injections to assess those fundamental parameters. Yet, in cardiac physiology study, the high first-pass myocardial extraction fraction of [11C]acetate allowed to use its influx rate as a blood flow marker too. Since [11C]acetate has been characterized by a 20–25% single pass renal extraction in dogs, it could be used as a potential tracer for renal perfusion. The aim of this study was to determine whether [11C]acetate influx rate can be used as quantitative in vivo marker of kidney perfusion in human. Methods In 10 healthy subjects, dynamic PET acquisitions were performed after [15O]H2O and [11C]acetate injections spaced by a 15-minute interval. As previously validated, with compartmental modeling of kinetics, renal perfusion and oxidative metabolism were estimated respectively with influx rate of [15O]H2O and efflux rate of [11C]acetate. Additionally, influx rate of [11C]acetate was regressed to influx rate of [15O]H2O. Results Renal time activity curves of [11C]-acetate was best fitted with a mono compartmental model compared to a bi-compartmental model (p  Conclusion In healthy subjects, over a wide range of renal perfusion, direct estimates of renal oxygen consumption as well as tissue perfusion can be obtained by PET with a single tracer [11C]acetate. This approach needs to be validated in CKD patients, and would be of great interest to design clinical protocol aiming at evaluating ischemic nephropathies candidate to revascularization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    3
    Citations
    NaN
    KQI
    []