Hyperion Image Analysis Depicts a Preliminary Landscape of Tumor Immune Microenvironment in OSCC with Lymph Node Metastasis.

2021 
Background Oral squamous cell carcinoma (OSCC) constitutes the most common types of oral cancer. Because its prognosis varies significantly, identification of a tumor immune microenvironment could be a critical tool for treatment planning and predicting a more accurate prognosis. This study is aimed at utilizing the Hyperion imaging system to depict a preliminary landscape of the tumor immune microenvironment in OSCC with lymph node metastasis. Methods We collected neoplasm samples from OSCC patients. Their formalin-fixed, paraffin-embedded (FFPE) tissue sections were obtained and stained utilizing a panel of 26 clinically relevant metal-conjugated antibodies. Detection and analysis were performed for these stained cells with the Hyperion imaging system. Results Four patients met our inclusion criteria. We depicted a preliminary landscape of their tumor immune microenvironment and identified 25 distinct immune cell subsets from these OSCC patients based on phenotypic similarity. All these patients had decreased expression of CD8+ T cells in tumor specimens. Variety in cell subsets was seen, and more immune activated cells were found in patient A and patient B than those in patient C and patient D. Such differences in tumor immune microenvironments can contribute to forecasting of individual prognoses. Conclusion The Hyperion imaging system helped to delineate a preliminary and multidimensional landscape of the tumor immune microenvironment in OSCC with lymph node metastasis and provided insights into the influence of the immune microenvironment in determination of prognoses. These results reveal possible contributory factors behind different prognoses of OSCC patients with lymph node metastasis and provide reference for individual treatment planning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []