One electron oxidation of 3-methylcholanthrene: A chemical model for its mechanism of carcinogenesis

2017 
Abstract One electron transfer oxidation has long been proposed as a route to the ultimate electrophilic and carcinogenic metabolites of both methylated and non-methylated polycyclic aromatic hydrocarbons (PAH). The carcinogenic hydrocarbon 3-methylcholanthrene (3-MC) has a methyl-analogous function at its meso-anthracenic center in the form of a dimethylene bridge, and treatment of this compound with the one electron transfer oxidizing reagent ferric ferricyanide, Fe III (Fe III (CN) 6 ), in mixed aqueous-organic media generated multiple oxygenated species, many of which duplicate those found in mammalian metabolism including known carcinogens 1-hydroxy-3MC and 1-keto-3MC. These results are in agreement with a Unified Theory for PAH Carcinogenicity which predicts in vivo generation of a proximate benzylic alcohol metabolite from the 3-MC procarcinogen and conjugation with a moiety such as sulfate intended for rapid urinary excretion. The sulfate instead acts as a leaving group and generates an electrophilic carbocation capable of reacting with sensitive nucleophiles such as DNA in cellular nuclei. The products of one electron transfer oxidation align well with predictions of the Unified Theory since in many cases these products provide substrates or precursors for conjugation reactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    2
    Citations
    NaN
    KQI
    []