Robust hypothesis testing for asymmetric nominal densities under a relative entropy tolerance
2018
In this paper, we address an open problem raised by Levy (2009) regarding the design of a binary minimax test without the symmetry assumption on the nominal conditional probability densities of observations. In the binary minimax test, the nominal likelihood ratio is a monotonically increasing function and the probability densities of the observations are located in neighborhoods characterized by placing a bound on the relative entropy between the actual and nominal densities. The general minimax testing problem at hand is an infinite-dimensional optimization problem, which is quite difficult to solve. In this paper, we prove that the complicated minimax testing problem can be substantially reduced to solve a nonlinear system of two equations having only two unknown variables, which provides an efficient numerical solution.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
17
References
2
Citations
NaN
KQI