Modulating Single‐Atom Palladium Sites with Copper for Enhanced Ambient Ammonia Electrosynthesis

2020 
The electrochemical reduction of N2 to NH3 is emerging as a promising alternative for sustainable and distributed production of NH3 . However, the development has been impeded by difficulties in N2 adsorption, protonation of *NN, and inhibition of competing hydrogen evolution. To address the issues, we design a catalyst with diatomic Pd-Cu sites on N-doped carbon by modulation of single-atom Pd sites with Cu. The introduction of Cu not only shifts the partial density of states of Pd toward the Fermi level but also promotes the d-2π* coupling between Pd and adsorbed N2 , leading to enhanced chemisorption and activated protonation of N2 , and suppressed hydrogen evolution. As a result, the catalyst achieves a high Faradaic efficiency of 24.8±0.8 % and a desirable NH3 yield rate of 69.2±2.5 μg h-1  mgcat.-1 , far outperforming the individual single-atom Pd catalyst. This work paves a pathway of engineering single-atom-based electrocatalysts for enhanced ammonia electrosynthesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    33
    Citations
    NaN
    KQI
    []