Functional Interactions between Cytoplasmic Domains of the Skeletal Muscle Ca2+ Release Channel

1997 
Abstract The skeletal muscle Ca2+release channel (RYR1), which plays a critical role in excitation-contraction coupling, is a homotetramer with a subunit molecular mass of 565 kDa. Oxidation of the channel increases its activity and produces intersubunit cross-links within the RYR1 tetramer (Aghdasi, B., Zhang, J., Wu, Y., Reid, M. B., and Hamilton, S. L. (1997) J. Biol. Chem. 272, 3739–3748). Alkylation of hyperreactive sulfhydryls on RYR1 withN-ethylmaleimide (NEM) inhibits channel function and blocks the intersubunit cross-linking. We used calpain and tryptic cleavage, two-dimensional SDS-polyacrylamide gel electrophoresis, N-terminal sequencing, sequence-specific antibody Western blotting, and [14C]NEM labeling to identify the domains involved in these effects. Our data are consistent with a model in which 1) diamide, an oxidizing agent, simultaneously produces an intermolecular cross-link between adjacent subunits within the RYR1 tetramer and an intramolecular cross-link within a single subunit; 2) all of the cysteines involved in both cross-links are in either the region between amino acids ∼2100 and 2843 or the region between amino acids 2844 and 4685; 3) oxidation exposes a new calpain cleavage site in the central domain of the RYR1 (in the region around amino acid 2100); 4) sulfhydryls that react most rapidly with NEM are located in the N-terminal domain (between amino acids 426 and 1396); 5) alkylation of the N-terminal cysteines completely inhibits the formation of both inter- and intrasubunit cross-links. In summary, we present evidence for interactions between the N-terminal region and the putatively cytoplasmic central domains of RYR1 that appear to influence subunit-subunit interactions and channel activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    60
    Citations
    NaN
    KQI
    []