Replication-dependent and selection-induced mutations in respiration-competent and respiration-deficient strains of Saccharomyces cerevisiae

1998 
Adaptive or selection-induced mutations are defined as mutations that occur in non-dividing cells as a response to prolonged non-lethal selective pressure such as starvation for an essential amino acid. In the absence of DNA replication, the processing of endogenous DNA lesions by repair enzymes probably acts as a source of mutations. We are studying selection-induced reversions of frameshift alleles in the eukaryote Saccharomyces cerevisiae. Here we show that respiration-deficient strains, totally devoid of mitochondrial DNA, yield selection-induced mutants at slightly elevated frequencies compared to isonucleic respiration-competent strains. Therefore factors of mitochondrial origin such as reactive oxygen species or hypothetical recombinogenic DNA fragments are unlikely to be mediators of selection-induced nuclear frameshift mutation in yeast. Furthermore we compared sequence spectra of reversions of the +1 hom3-10 frameshift allele and found a strong preference for −1 deletions in mononucleotide repeats in selection-induced and replication-dependent revertants, indicating slippage errors during DNA repair synthesis as well as during DNA replication. Remarkably, a higher degree of variation in the site of the reverting frameshift and accompanying base substitutions was found among selection-induced revertants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    27
    Citations
    NaN
    KQI
    []