Chaotic mixing in microfluidic devices driven by oscillatory cross flow

2008 
The kinematics of oscillatory cross flow has been studied numerically as a means for generating chaotic mixing in microfluidic devices for both confined and continuous throughput flow configurations. The flow is analyzed using numerical simulation of the unsteady Navier–Stokes equations combined with tracking of single and multispecies passive tracer particles. Two characteristics of chaotic flow are demonstrated: the stretching and folding of material lines leading to particle dispersion and a positive “effective” Lyapunov exponent. The primary mechanism for the generation of chaotic flow is a periodic combination of stretching (which occurs via shear in the channels) and rotation (which occurs via the timing of the oscillations), making these systems effective tendril-whorl type flows. First, the case of confined mixing is studied. It is shown that chaotic flow is generated in a cross-cell device when sinusoidally driven, out-of-phase, perpendicular fluid streams intersect in the flow domain. Calculatio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    31
    Citations
    NaN
    KQI
    []