Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass

2011 
We investigate TMMF photopolymer as a cost-efficient alternative to glass for the leak-tight sealing of high-density silicon microchannels. TMMF enables low temperature sealing and access to structures underneath via lamination and standard UV-lithography instead of costly glass machining and anodic bonding. TMMF is highly transparent and has a low autofluorescence for wavelengths larger than 400 nm. As the photopolymer is too thin for implementing bulky world-to-chip interfaces, we propose adhesive bonding of cyclic olefin copolymer (COC) modules. All materials were tested according ISO 10993-5 and showed no cytotoxic effects on the proliferation of L929 cells. To quantify the cost efficiency of the proposed techniques, we used an established silicon/Pyrex nanoliter dispenser as a reference and replaced structured Pyrex wafers by TMMF laminates and COC modules. Thus, consumable costs, manpower and machine time related to sealing of the microchannels and implementing the world-to-chip interface could be significantly reduced. Leak tightness was proved by applying a pressure of 0.2 MPa for 5 h without delamination or crosstalk between neighboring microchannels located only 100 µm apart. In contrast to anodic bonding, the proposed techniques are tolerant to surface inhomogeneities. They enable manufacturing of silicon/polymer microfluidics at lower costs and without compromising the performance compared to corresponding silicon/glass devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    29
    Citations
    NaN
    KQI
    []