Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology

2020 
Between 6-20% of the cellular proteome is under circadian control to tune cell function with cycles of environmental change. For cell viability, and to maintain volume within narrow limits, the osmotic pressure exerted by changes in the soluble proteome must be compensated. The mechanisms and consequences underlying compensation are not known. Here, we show in cultured mammalian cells and in vivo that compensation requires electroneutral active transport of Na⁺, K⁺, and Cl⁻ through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes alter their electrical activity at different times of the day. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    102
    References
    0
    Citations
    NaN
    KQI
    []