Replicability analysis in genome-wide association studies via Cartesian hidden Markov models

2019 
Background Replicability analysis which aims to detect replicated signals attracts more and more attentions in modern scientific applications. For example, in genome-wide association studies (GWAS), it would be of convincing to detect an association which can be replicated in more than one study. Since the neighboring single nucleotide polymorphisms (SNPs) often exhibit high correlation, it is desirable to exploit the dependency information among adjacent SNPs properly in replicability analysis. In this paper, we propose a novel multiple testing procedure based on the Cartesian hidden Markov model (CHMM), called repLIS procedure, for replicability analysis across two studies, which can characterize the local dependence structure among adjacent SNPs via a four-state Markov chain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []