Coherent X-Ray Imaging of CO-Adsorption-Induced Structural Changes in Pt Nanoparticles: Implications for Catalysis

2019 
Using coherent X-ray diffraction imaging (CXDI) as an in situ tool, we determined the shape and strain state of a platinum nanoparticle with ≈160 nm diameter supported by a strontium titanate substrate. The experiment was performed at a temperature of 400 K under continuous gas flow conditions of pure Ar and Ar/CO mixtures. The nanoparticle was preselected by scanning electron microscopy (SEM) and postanalyzed by atomic force microscopy (AFM). We obtain a very good agreement between the overall nanoparticle size, shape, and defect structure as determined by CXDI and AFM. In addition, we compare the strain state in the nanoparticle near surface region and its bulk: For pure Ar flow, we find a slight compressive strain in the nanoparticle bulk compared to an expansion in the near surface region. We ascribe the latter to the presence of high index vicinal surfaces. Our analysis suggests that under mixed Ar/CO flow at 400 K reshaping of the nanoparticle occurred. New high index facets developed, leading to a ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    15
    Citations
    NaN
    KQI
    []