An Efficient Volume Integral Equation Solution to EM Scattering by Complex Bodies With Inhomogeneous Bi-Isotropy

2007 
A generalized volume integral equation method is formulated for electromagnetic scattering by arbitrarily shaped complex bodies with inhomogeneous bi-isotropy. Based on the volume equivalence principle, the integral equations are represented in terms of a pair of coupled bi-isotropic polarized volume electric and magnetic flux densities. Reduction of the integral equations into the corresponding matrix equations is obtained using the method of moments (MoM) combined with the tetrahedral mesh. In the MoM solution, the three-dimensional solenoidal function is incorporated as the basis function defined over each tetrahedral element and the details of implementation, particularly the treatment of integral singularities, will be elucidated. The efficiency and accuracy of the proposed method are validated by illustratively supported examples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    18
    Citations
    NaN
    KQI
    []