Generalized approach to inverse problems in tomography: Image reconstruction for spatially variant systems using natural pixels
1992
A major limitation in tomographic inverse problems is inadequate computation speed, which frequently impedes the application of engineering ideas and principles in medical science more than in the physical and engineering sciences. Medical problems are computationally taxing because a minimum description of the system often involves 5 dimensions (3 space, 1 energy, 1 time), with the range of each space coordinate requiring up to 512 samples. The computational tasks for this problem can be simply expressed by posing the problem as one in which the tomograph system response function is spatially invariant, and the noise is additive and Gaussian. Under these assumptions, a number of reconstruction methods have been implemented with generally satisfactory results for general medical imaging purposes. However, if the system response function of the tomograph is assumed more realistically to be spatially variant and the noise to be Poisson, the computational problem becomes much more difficult. Some of the algorithms being studied to compensate for position dependent resolution and statistical fluctuations in the data acquisition process, when expressed in canonical form, are not practical for clinical applications because the number of computations necessary exceeds the capabilities of high performance computer systems currently available. Reconstruction methods based onmore » natural pixels, specifically orthonormal natural pixels, preserve symmetries in the data acquisition process. Fast implementations of orthonormal natural pixel algorithms can achieve orders of magnitude speedup relative to general implementations. Thus, specialized thought in algorithm development can lead to more significant increases in performance than can be achieved through hardware improvements alone.« less
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
28
Citations
NaN
KQI