High mobility AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on semi-insulating GaN templates prepared by hydride vapor phase epitaxy
2002
We report on an extensive study of the growth and transport properties of the two-dimensional electron gas (2DEG) confined at the interface of AlGaN/GaN heterostructures grown by molecular beam epitaxy (MBE) on thick, semi-insulating GaN templates prepared by hydride vapor phase epitaxy (HVPE). Thick (∼20 μm) GaN templates are characterized by low threading dislocation densities (∼5×108 cm−2) and by room temperature resistivities of ∼108 Ω cm. We describe sources of parasitic conduction in our structures and how they have been minimized. The growth of low Al containing (x⩽0.05) AlxGa1-xN/GaN heterostructures is investigated. The use of low Al containing heterostructures facilitates the study of the 2DEG transport properties in the previously unexplored regime of carrier density ns⩽2×1012 cm−2. We detail the impact of MBE growth conditions on low temperature mobility. Using an undoped HVPE template that was residually n type at room temperature and characterized an unusually low dislocation density of ∼2×1...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
14
References
70
Citations
NaN
KQI