Optimization of a MIMO amplify-and- forward relay system with channel state information estimation error and feedback delay

2016 
This paper addresses the robust design of a multiple-input multiple-output amplify-and-forward relay system against channel state information (CSI) mismatch due to estimation error and feedback delay. The estimation error and feedback delay are expressed using appropriate models, from which we derive the conditional mean square error (MSE) between the desired and the received signals upon the estimated CSI. The conditional MSE is then minimized to optimize the relay beamforming matrix with relay transmission power constraint. It is shown that the proposed optimization problem reduces to the conventional minimum MSE problem when CSI mismatch vanishes. By analyzing the structure of the optimal beamforming matrix, the optimization problem is simplified so that it can be directly solved using the genetic algorithm (GA). To further reduce the computational load, we develop a relaxed version of the optimization problem. It is found that the relaxation enables us to efficiently solve the problem using water filling strategy. Computer simulations show that both GA and water filling solutions are superior to conventional solutions without CSI mismatch consideration, while the water filling is 1000 times faster than the GA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    3
    Citations
    NaN
    KQI
    []