A Zariski-local notion of F-total acyclicity for complexes of sheaves

2015 
We study a notion of total acyclicity for complexes of flat sheaves over a scheme. It is Zariski-local - i.e. it can be verified on any open affine covering of the scheme - and it agrees, in their setting, with the notion studied by Murfet and Salarian for sheaves over a noetherian semi-separated scheme. As part of the study we recover, and in several cases extend the validity of, recent theorems on existence of covers and precovers in categories of sheaves. One consequence is the existence of an adjoint to the inclusion of these totally acyclic complexes into the homotopy category of complexes of flat sheaves.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []