Repair of Noise-Induced Damage to Stereocilia F-actin Cores is Facilitated by XIRP2

2021 
Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as "gaps" in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein we show that gaps in mouse auditory hair cells are largely repaired within one week of traumatic noise exposure through the incorporation of newly synthesized actin. Additionally, we report that XIRP2 is required for the repair process and facilitates the enrichment of monomeric{gamma} -actin at gaps through its LIM domain-containing C-terminus. Our study describes a novel process by which hair cells can recover from sub-lethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []