A Fair Power Allocation Approach to OFDM-Based NOMA with Consideration of Clipping

2020 
Orthogonal frequency division multiplexing-based non-orthogonal multiple access (OFDM-NOMA) is a competitive solution to achieve a capacity gain over orthogonal frequency division multiplexing-based orthogonal multiple access (OFDM-OMA). However, a major drawback of OFDM-based systems is the high peak-to-average power ratio (PAPR). Clipping is widely used for PAPR reduction, but it will degrade the capacity performance. Motivated by this fact, a fair user signal power allocation approach to OFDM-NOMA with clipping is proposed, where the power allocation factor is selected from a fair region. This approach fulfills the demand that OFDM-NOMA capacity can always outperform OFDM-OMA capacity for each paired user, regardless of the user pairing criteria, making it applicable for implementation using any scheduling paradigms. Therefore, the proposed approach can also be viewed as a solution to address fairness for the cell edge user in OFDM-NOMA systems. Both the theoretical and numerical results indicate that, although the capacity performance of OFDM-NOMA and OFDM-OMA is decreased and restrained at a high signal-to-noise ratio (SNR) by clipping, applying the proposed approach on OFDM-NOMA can still meet the aforementioned demand. Besides, it is shown that both the lower and upper bounds of the fair region are increased with a decreasing of clipping ratio.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    1
    Citations
    NaN
    KQI
    []