Pyruvate is superior to reverse visceral hypoperfusion in peritoneal resuscitation from hemorrhagic shock in rats.

2014 
AIMS: The objective of this study was to investigate the effects of pyruvate-containing fluids on peritoneal resuscitation (PR), following intravenous fluid resuscitation from hemorrhagic shock (HS) in rats. METHODS: One hundred rats following 1-h HS with mean arterial pressure 35 ± 5 mmHg were randomly assigned to five groups (n = 10) in each of two comparable sets: group VR: intravenous resuscitation (VR) only and four groups with PR after VR: groups NS, LA, P1, and P2, resuscitated with normal saline, lactated peritoneal dialysis solution (PDS), pyruvated PDS, and 2.2% pyruvate, respectively. The splanchnic blood flow on surfaces of liver, kidney, and intestinal mucosa was detected. Blood samples were taken before HS and at T180 or T360 in these two animal sets after hemorrhage for function tests of liver, kidney, and intestinal mucosa, respectively. The intestinal mucosal barrier protein: zonula occludens 1 (ZO-1) and tissue water contents of these organs were also determined. RESULTS: Splanchnic blood flow was significantly preserved in all PR groups with hyperosmolar solutions: group P1 and group P2 with pyruvate were more advantageous than group LA. Group P2 was the most efficient among groups in reverse of visceral hypoperfusion. Organ function and tissue water contents of liver, kidney, and intestine and the intestinal barrier ZO-1 density were also improved in group P1 and group P2, compared with group LA. Among organs, the pyruvate protection of intestinal mucosa was the most apparent by reversing splanchnic blood flow and diamine oxidase close to reference ranges with the highest ZO-1 density. Group P2 showed the most pyruvate protection in all test parameters among four groups with PR. CONCLUSIONS: Peritoneal resuscitation with hyperosmolar fluids attenuated visceral vasoconstriction and splanchnic hypoperfusion and improved the intestinal barrier protein and organ function following conventional fluid resuscitation from severe HS in rats. Pyruvate was superior to lactate in PDS as PR fluids, and 2.2% pyruvate was the optimal fluid in PR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    15
    Citations
    NaN
    KQI
    []