Modeling and Analysis of Nonlinear Dynamic System with Lévy Jump Based on Cargo Sorting DNA Robot.

2021 
In this paper, a model of nonlinear dynamic system with Levy jumps based on cargo sorting DNA robot is studied. Firstly, nonlinear biochemical reaction system based on cargo sorting DNA robot model is established. Considering the influence of external disturbances on the system, nonlinear biochemical reaction system with Levy jump is built and its dimensionality is reduced. Secondly, in order to prove that the built system conforms to the actual meaning, the existence and uniqueness of the system solution is verified. Next, the sufficient conditions for the completion of cargo pick-up of cargo sorting DNA robot and the continued sufficiency are introduced, and the progress of cargo sorting DNA robot under different noise intensities is analyzed. Then, it is proved that the positive recursion of the reaction can better describe and show the persistence of the system. Finally, numerical simulations verify the correctness of the theoretical results. The results show that the end of cargo pick-up with DNA robots for cargo sorting is closely related to the intensity of noise.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []