A FOUNDER EFFECT LED EARLY SARS-COV-2 TRANSMISSION IN SPAIN.

2020 
SARS-CoV-2 whole-genome analysis has identified five large clades worldwide, emerged in 2019 (19A and 19B) and in 2020 (20A, 20B and 20C). This study aims to analyze the diffusion of SARS-CoV-2 in Spain using maximum likelihood phylogenetic and Bayesian phylodynamic analyses. The most recent common ancestor (MRCA) of the SARS-CoV-2 pandemic was estimated in Wuhan, China, around November 24, 2019. Phylogenetic analyses of the first 12,511 SARS-CoV-2 whole genome sequences obtained worldwide, including 290 from 11 different regions of Spain, revealed 62 independent introductions of the virus in the country. Most sequences from Spain were distributed in clades characterized by D614G substitution in S gene (20A, 20B and 20C) and L84S substitution in ORF8 (19B) with 163 and 118 sequences, respectively, with the remaining sequences branching in 19A. A total of 110 (38%) sequences from Spain grouped in four different monophyletic clusters of 20A clade (20A-Sp1 and 20A-Sp2) and 19B clade (19B-Sp1 and 19B-Sp2) along with sequences from 29 countries worldwide. The MRCA of 19A-Sp1, 20A-Sp1, 19A-Sp2 and 20A-Sp2 clusters were estimated in Spain around January 21 and 29, and February 6 and 17, 2020, respectively. The prevalence of 19B clade in Spain (40%) was by far higher than in any other European country during the first weeks of the epidemic, probably by a founder effect. However, this variant was replaced by G614-bearing viruses in April. In vitro assays showed an enhanced infectivity of pseudotyped virions displaying G614 substitution compared with D614, suggesting a fitness advantage of D614G.IMPORTANCE Multiple SARS-CoV-2 introductions have been detected in Spain and at least four resulted in the emergence of locally transmitted clusters originated not later than mid-February, with further dissemination to many other countries around the world and a few weeks before the explosion of COVID-19 cases detected in Spain during the first week of March. The majority of the earliest variants detected in Spain branched in 19B clade (D614 viruses), which was the most prevalent clade during the first weeks of March, pointing to a founder effect. However, from mid-March to June, 2020, G614-bearing viruses (20A, 20B and 20C clades) overcame D614 variants in Spain, probably as a consequence of an evolutionary advantage of this substitution in the spike protein. A higher infectivity of G614-bearing viruses compared to D614 variants was detected, suggesting that this substitution in SARS-CoV-2 spike protein could be behind the variant shift observed in Spain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    15
    Citations
    NaN
    KQI
    []