Surface Segregation in CuNi Nanoparticle Catalysts During CO2 Hydrogenation: The Role of CO in the Reactant Mixture

2019 
Surface segregation and restructuring in size-selected CuNi nanoparticles were investigated via near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at various temperatures in different gas environments. Particularly in focus were structural and morphological changes occurring under CO2 hydrogenation conditions in the presence of carbon monoxide (CO) in the reactant gas mixture. Nickel surface segregation was observed when only CO was present as adsorbate. The segregation trend is inverted in a reaction gas mixture consisting of CO2, H2, and CO, resulting in an increase of copper concentration on the surface. Density functional theory calculations attributed the inversion of the segregation trend to the formation of a stable intermediate on the nanocatalyst surface (CH3O) in the CO-containing reactant mixture, which modifies the nickel segregation energy, thus driving copper to the surface. The promoting role of CO for the synthesis of methanol was demonstrated by catalytic characterization me...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    18
    Citations
    NaN
    KQI
    []