Myocardial work index: a marker of left ventricular contractility in pressure‐induced or volume overload‐induced heart failure

2021 
AIMS While global longitudinal strain (GLS) is considered to be a sensitive marker of left ventricular (LV) function, it is significantly influenced by loading conditions. We hypothesized that global myocardial work index (GMWI), a novel marker of LV function, may show better correlation with load-independent markers of LV contractility in rat models of pressure-induced or volume overload-induced heart failure. METHODS AND RESULTS Male Wistar rats underwent either transverse aortic constriction (TAC; n = 12) or aortocaval fistula creation (ACF; n = 12), inducing LV pressure or volume overload, respectively. Sham procedures were performed to establish control groups (n = 12/12). Echocardiographic loops were obtained to determine GLS and GMWI. Pressure-volume analysis with transient occlusion of the inferior caval vein was carried out to calculate preload recruitable stroke work (PRSW), a load-independent 'gold-standard' parameter of LV contractility. Myocardial samples were collected to assess interstitial and perivascular fibrosis area and also myocardial atrial-type natriuretic peptide (ANP) and brain-type natriuretic peptide (BNP) relative mRNA expression. Compared with controls, GLS was substantially lower in the TAC group (-7.0 ± 2.8 vs. -14.5 ± 2.5%; P < 0.001) and was only mildly reduced in the ACF group (-13.2 ± 2.4 vs. -15.4 ± 2.0%, P < 0.05). In contrast with these findings, PRSW and GMWI were comparable with sham in TAC (110 ± 26 vs. 116 ± 68 mmHg; 1687 ± 275 mmHg% vs. 1537 ± 662 mmHg%; both P = NS), while it was found to be significantly reduced in ACF (58 ± 14 vs. 111 ± 40 mmHg; 1328 ± 411 vs. 1934 ± 308 mmHg%, both P < 0.01). In the pooled population, GMWI (r = 0.70; P < 0.001) but not GLS (r = -0.23; P = 0.12) showed a strong correlation with PRSW. GLS correlated with interstitial (r = 0.61; P < 0.001) and perivascular fibrosis area (r = 0.54; P < 0.001), and also with myocardial ANP (r = 0.85; P < 0.001) and BNP relative mRNA expression (r = 0.75; P < 0.001), while GMWI demonstrated no or only marginal correlation with these parameters. CONCLUSIONS Being significantly influenced by loading conditions, GLS may not be a reliable marker of LV contractility in heart failure induced by pressure or volume overload. GMWI better reflects contractility in haemodynamic overload states, making it a more robust marker of systolic function, while GLS should be considered as an integrative marker, incorporating systolic function, haemodynamic loading state, and adverse tissue remodelling of the LV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []