Insulating state of ultrathin epitaxial LaNiO{sub 3} thin films detected by hard x-ray photoemission

2011 
In order to understand the influence of strain and film thickness on the electronic structure of thin films of strongly correlated oxides, we have applied hard x-ray photoemission (HXPS) at 6 keV, soft x-ray photoemission (XPS) at 1.5 keV, and transmission electron microscopy to epitaxial LaNiO{sub 3} films deposited on two substrates: LaAlO{sub 3} (compressive strain) and (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (tensile strain). Using inelastic attenuation lengths in LaNiO{sub 3} determined from the HXPS data, we have decomposed valence-band spectra into layer-specific contributions. This decomposition is validated by comparing with the results of first-principles calculations using a hybrid functional. The resultant thin-film LaNiO{sub 3} densities of states exhibit significant differences in spectral weights for the thinnest LaNiO{sub 3} films. A gap opening consistent with a metal-to-insulator transition is observed for the thinnest 2.7 nm LaNiO{sub 3} film on an (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} substrate, with a similar gap opening also being observed in complementary soft x-ray photoemission at 1.5 keV for a thinner 1.4 nm film on an LaAlO{sub 3} substrate. A metal-to-insulator transition in very thin nm-scale films of LaNiO{sub 3} is thus suggested as a general phenomenon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    27
    Citations
    NaN
    KQI
    []