Investigations on the Influence of Strain Rate, Temperature and Reinforcement on Strength and Deformation Behavior of CrMnNi-Steels

2020 
This section presents the results of comprehensive investigations into the strength and deformation behavior of CrMnNi-TRIP/TWIP steels and particle-reinforced TRIP-Matrix-Composites. These investigations combined quasi-static and dynamic tensile, compressive, and plate impact tests with ex situ microstructure analysis using electron microscopy and diffraction techniques on representative samples. The aim was the investigation and microstructurally-based description and modeling of the temperature and strain rate dependent strength, deformation and failure behavior of these advanced materials. It could be shown that the behavior of austenitic CrMnNi steels is controlled by different deformation mechanisms. These include mechanical twinning and martensitic phase transformations, whose occurrences or interactions are influenced by the chemical composition or the austenite stability, the stacking fault energy, the deformation temperature and rate as well as by the loading direction. Furthermore, the mechanical properties of honeycomb structures made of CrMnNi steel or TRIP-Matrix-Composites have been investigated. These are intended as lightweight and high strength components to improve the crash performance of constructions in the field of mobility. Since their mechanical properties are influenced by several parameters such as the chemical composition of the material, the structure type or the reinforcement content, detailed analyses are necessary before their application in vehicle components.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    0
    Citations
    NaN
    KQI
    []