language-icon Old Web
English
Sign In

A Dirac delta operator.

2020 
If $T$ is a (densely defined) self-adjoint operator acting on a complex Hilbert space $\mathcal{H}$ and $I$ stands for the identity operator, we introduce the delta function operator $\lambda \mapsto \delta \left(\lambda I-T\right) $ at $T$. When $T$ is a bounded operator, then $\delta \left(\lambda I-T\right) $ is an operator-valued distribution. If $T$ is unbounded, $\delta \left(\lambda I-T\right) $ is a more general object that still retains some properties of distributions. We derive various operative formulas involving $\delta \left(\lambda I-T\right) $ and give several applications of its usage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []