Functional meta-optics and nanophotonics govern by Mie resonances

2017 
Scattering of electromagnetic waves by subwavelength objects is accompanied by the excitation of electric and magnetic Mie resonances, that may modify substantially the scattering intensity and radiation pattern. Scattered fields can be decomposed into electric and magnetic multipoles, and the magnetic multipoles define magnetic response of structured materials underpinning the new field of all-dielectric resonant meta-optics. Here we review the recent developments in meta-optics and nanophotonics, and demonstrate that the Mie resonances can play a crucial role offering novel ways for the enhancement of many optical effects near magnetic and electric multipolar resonances, as well as driving a variety of interference phenomena which govern recently discovered novel effects in nanophotonics. We further discuss the frontiers of all-dielectric meta-optics for flexible and advanced control of light with full phase and amplitude engineering, including nonlinear nanophotonics, anapole nanolasers, quantum tomography, and topological photonics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []