Characterization of a novel esterase conferring insecticide resistance in the mosquito Culex tarsalis

1995 
Resistance to the organophosphate insecticide, malathion, in a strain of Culex tarsalis mosquitoes is due to increased activity of a malathion carboxylesterase (MCE). To determine whether resistance was due to a qualitative or quantitative change in the MCE, the enzyme was purified from both malathion-resistant and -susceptible mosquitoes. Enzyme kinetic measurements revealed that the two strains have one MCE in common, but resistant mosquitoes also have a unique MCE which hydrolyses malathion 18 times faster. Interestingly, this MCE does not hydrolyse α-naphthyl acetate, a substrate commonly used to detect increased levels of esterases in other organophosphate-resistant insects. Unlike the over-produced esterase of some related mosquito species, each MCE in C. tarsalis accounts for only a small fraction (0.015%) of the total extractable protein in either strain. Therefore, resistance in these insects is due to the presence of a qualitatively different enzyme, and not to a quantitative increase of a non-specific esterase. This study therefore demonstrates that the underlying biochemical mechanisms of insecticide resistance in one insect cannot necessarily be predicted from those of another, even closely related species. © 1995 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    35
    Citations
    NaN
    KQI
    []