A Tale of Two Linkings: Dynamically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing.
2020
In Text-to-SQL semantic parsing, selecting the correct entities (tables and columns) to output is both crucial and challenging; the parser is required to connect the natural language (NL) question and the current SQL prediction with the structured world, i.e., the database. We formulate two linking processes to address this challenge: schema linking which links explicit NL mentions to the database and structural linking which links the entities in the output SQL with their structural relationships in the database schema. Intuitively, the effects of these two linking processes change based on the entity being generated, thus we propose to dynamically choose between them using a gating mechanism. Integrating the proposed method with two graph neural network based semantic parsers together with BERT representations demonstrates substantial gains in parsing accuracy on the challenging Spider dataset. Analyses show that our method helps to enhance the structure of the model output when generating complicated SQL queries and offers explainable predictions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
0
Citations
NaN
KQI