Pre-implantation mouse embryo movement under hormonally altered conditions

2021 
Precise regulation of embryo movement is crucial to successful implantation, but the role of ovarian hormones in this process is not understood. We ascertain the effects of altered hormonal environment on embryo movement using two delayed implantation models: Natural lactational Diapause (ND), a naturally occurring alternate model of pregnancy, and Artificially induced Diapause (AD), a laboratory version of ND. Our previous work suggests that embryos in a natural pregnancy (NP) first display unidirectional clustered embryo movement, followed by bidirectional scattering and spacing movement. In contrast, in the ND model, embryos are present as clusters near the oviductal-uterine junction for ~24-hours longer than NP, followed by locations consistent with a unidirectional scattering and spacing movement. Intriguingly, the AD model closely resembles embryo location in NP and not ND. Further, unlike the popular paradigm of reduced estrogen (E2) levels in diapause E2 levels are comparable across NP, ND, and AD, while progesterone (P4) levels are reduced in ND and highly increased in AD when compared to NP. Exogenous administration of E2 or P4 modifies the unidirectional clustered embryo movement, while E2 treatment causes a reduction in P4 and affects the bidirectional phase of embryo movement. Taken together, our data suggest embryo movement can be modulated by both P4 and E2. Understanding natural hormonal adaptation in diapause provides an opportunity to determine key players regulating embryo movement and implantation success. This knowledge can be leveraged to understand pregnancy survival and implantation success in hormonally altered conditions in the clinic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []