Biophysical and Fluoride Release Properties of a Resin Modified Glass Ionomer Cement Enriched with Bioactive Glasses

2021 
The aim of this study was to evaluate the bond strength, microleakage, cytotoxicity, cell migration and fluoride ion release over time from a resin-modified glass-ionomer cement (RMGIC) enriched with bioactive glasses (BAGs) and a nanohybrid restorative polymer resin agent used as adhesion material in the cemented brackets. One hundred and twenty bovine lower incisors were divided into three groups: (Transbond Plus Self Etching Primer (TSEP)/Transbond XT (TXT), TSEP/ACTIVA, orthophosphoric acid gel/ACTIVA) and brackets were bonded. A bond strength test and microleakage test were applied. A fluoride release test was applied after 60 days for the TXT and ACTIVA group. To evaluate cytotoxicity and cell migration, a cell viability and scratch migration assay were done for each group. p values < 0.05 were considered significant. Regarding bond strength and microleakage test, no significant differences were found between TSEP/TXT and TSEP/ACTIVA. At 6.4 pH, ACTIVA showed a higher degree of fluoride ion release, which increased with acid pH (3.5), with a maximum fluoride secretion at 30 days. MTT assay revealed that TXT reduces the viability of gingival cells with significant differences (p < 0.001) compared to the untreated cells (control group). ACTIVA provides optimal adhesive and microfiltration properties, releases substantial amounts of fluoride ions in both acid and neutral media, and its biocompatibility is greater than that of traditional composite resin adhesive systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []