Defect properties of ZnO nanopowders and their modifications induced by remote plasma treatments

2009 
Photoluminescence (PL) and positron lifetime (LT) measurements were used on several commercial ZnO nanopowders. We observed that sample-to-sample differences in the quality of the powders overshadow any observation of probable size effects. However, the average LT for all nanocrystals is longer than in a bulk sample, consistent with the hypothesis of crystals with surface and subsurface layers rich in defects. Temperature-dependent PL spectra from the ZnO nanopowders were analyzed in detail for the bound-exciton (BEx) range and the numerical fits of the peak positions yielded activation energies that suggested different channels of recombination for the BEx. Also, fits for the full width at half maximum (FWHM) show nonlinear behavior, indicating contribution from surface phonons. We, also, used remote nitrogen and hydrogen plasma treatment on the ZnO nanosystems to manipulate their surface and subsurface defect states. We demonstrated that those plasma species induce a variety of changes in the deep defect visible emission as well as in the BEx luminescence, most likely associated with the surface/subsurface states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    2
    Citations
    NaN
    KQI
    []