Analysis of parameters affecting the bending behavior of spent fuel rods

2016 
Transport packages for spent nuclear fuel have to be assessed with respect to specific transport conditions which are defined in the regulations of the International Atomic Energy Agency. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package capabilities under these conditions. Cracks or failures in the fuel rod cladding can cause the release of gas, volatiles or fuel particles into the cavity. The amount of substances in the cavity has to be considered in the assessment of the activity release and criticality safety. The mechanical analysis of the compound system formed by the fuel rod cladding and the spent fuel pellets is very difficult due to the limited knowledge of the material properties and the insufficient understanding of the interaction between pellets and cladding and between adjacent pellets. The variation of fuel assembly properties regarding cladding material, burn-up and the history of usage makes reliable predictions of the fuel rod behavior even harder. For a better understanding about the behavior of spent fuel rods, JRC-ITU and BAM have started a joint research project. In this context, JRC-ITU has developed a test device which allows quasi-static 3-point-bending test on fuel rod segments in the hot cell. The loads are applied with respect to the boundary conditions of the activity release assessment. This paper deals with the numerical calculation of a single fuel rod segment under bending load. The aim is to identify the governing mechanical parameters by the variation of constitutive assumptions, contact conditions, inner constraints, etc. This knowledge helps for the interpretation of the experimental results. Furthermore, the improved understanding about the behavior of the cladding-pellets system will be beneficial for the assessment of spent fuel transport conditions.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []