Effect of mass transfer on aeroheating in hypersonic chemically reacting boundary layers

2019 
Heat flux characterization of high-enthalpy boundary layer flows is key to optimize the performance and design of Thermal Protection System of next generation aerospace vehicles [1]. At atmospheric entry hypersonic speeds, ablation as well as surface catalycity impact boundary layer aeroheating. Out-gassing occurring from an ablative surface in planetary entry environment introduces a rich set of problems in thermodynamic, fluid dynamic, and material pyrolysis. Ablation leads to out-gassing and surface roughness, both of which are known to affect surface heating in hypersonic chemically reacting boundary layers via three main routes: gas blowing into the boundary layer from the wall, changing the surface heat transfer due to wall-flow chemical reactions, and modifying surface roughness via ablative processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []