Phenylhydrazinium Iodide for Surface Passivation and Defects Suppression in Perovskite Solar Cell

2020 
In recent years, hybrid perovskite solar cells (HPSCs) have received considerable research attention due to their impressive photovoltaic performance and low‐temperature solution processing capability. However, there remain challenges related to defect passivation and enhancing the charge carrier dynamics of the perovskites, to further increase the power conversion efficiency of HPSCs. In this work, the use of a novel material, phenylhydrazinium iodide (PHAI), as an additive in MAPbI3 perovskite for defect minimization and enhancement of the charge carrier dynamics of inverted HPSCs is reported. Incorporation of the PHAI in perovskite precursor solution facilitates controlled crystallization, higher carrier lifetime, as well as less recombination. In addition, PHAI additive treated HPSCs exhibit lower density of filled trap states (1010 cm−2) in perovskite grain boundaries, higher charge carrier mobility (≈11 × 10−4 cm2 V−1 s), and enhanced power conversion efficiency (≈18%) that corresponds to a ≈20% improvement in comparison to the pristine devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    40
    Citations
    NaN
    KQI
    []