Quantitative analysis of metastatic breast cancer in mice using deep learning on cryo-image data.

2021 
Cryo-imaging sections and images a whole mouse and provides ~ 120-GBytes of microscopic 3D color anatomy and fluorescence images, making fully manual analysis of metastases an onerous task. A convolutional neural network (CNN)-based metastases segmentation algorithm included three steps: candidate segmentation, candidate classification, and semi-automatic correction of the classification result. The candidate segmentation generated > 5000 candidates in each of the breast cancer-bearing mice. Random forest classifier with multi-scale CNN features and hand-crafted intensity and morphology features achieved 0.8645 ± 0.0858, 0.9738 ± 0.0074, and 0.9709 ± 0.0182 sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic (ROC), with fourfold cross validation. Classification results guided manual correction by an expert with our in-house MATLAB software. Finally, 225, 148, 165, and 344 metastases were identified in the four cancer mice. With CNN-based segmentation, the human intervention time was reduced from > 12 to ~ 2 h. We demonstrated that 4T1 breast cancer metastases spread to the lung, liver, bone, and brain. Assessing the size and distribution of metastases proves the usefulness and robustness of cryo-imaging and our software for evaluating new cancer imaging and therapeutics technologies. Application of the method with only minor modification to a pancreatic metastatic cancer model demonstrated generalizability to other tumor models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []