Microtubular α-Fe2O3/Fe2(MoO4)3 heterostructure derived from absorbent cotton for enhanced ppb-level H2S gas-sensing performance

2021 
Abstract Microtubular α-Fe2O3/Fe2(MoO4)3 heterostructure (FFMO) was massively prepared by facile immersion-calcination method with absorbent cotton being employed as template, which is formed by a great number of cross-linking nanoparticles. In comparison with the pure iron molybdate (FMO) microtubules, the small-sized α-Fe2O3 nanocrystals evenly attached to the surface of FMO particles, increasing the specific surface area of FFMO composites and forming broad hierarchical pores. Gas-sensing measurement indicates that the sensor fabricated from FFMO heterostructure presents response of 12.69 toward 10 ppm H2S, being about 2.2 times larger than that of pure FMO-based sensor. And the working temperature also reduces from 170 °C to 133 °C. In particular, the FFMO composite exhibits the fastest response (Tres = 3 s) and the lowest detection limit (50 ppb) to H2S gas among all reported FMO-based sensors. Such rapid response and highly sensitive to trace H2S are dominantly assigned to the synergism of the inherent properties of multistage-pores microtubule, n-n heterojunction, surface adsorbed oxygen, as well as the generation of metastable iron sulfide induced by lattice oxygen. In addition, the gas-sensing mechanism of the sensor is also studied in detail.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    5
    Citations
    NaN
    KQI
    []