Origin and Evolution of a Novel DnaA-Like Plasmid Replication Type in Rhodobacterales

2011 
Large extrachromosomal elements are widespread among Alphaproteobacteria, but it is unclear how up to a dozen lowcopy plasmids can stably coexist within the same cell. We systematically analyzed the distribution of different replicons in about 40 completely sequenced genomes of the Roseobacter clade (Rhodobacterales) and surprisingly identified a novel plasmid replicon type. The conserved replication module comprises the characteristic partitioning operon (parAB) and a hitherto unknown replicase. The latter shows a weak homology to the chromosomal replication initiator DnaA and was accordingly named ‘‘DnaA-like.’’ Phylogenetic analyses of the adjacent parAB genes document a common ancestry with repA- and repB-type plasmids and moreover indicate the presence of two dnaA-like compatibility groups. This conclusion is supported by conserved palindrome sequences within the replication module that probably represent crucial centromeric anchors for plasmid partitioning. The functionality of dnaA-like replicons was proven by transformation experiments in Phaeobacter gallaeciensis BS107 (DSM 17395). This Roseobacter strain furthermore allows the phenotypical monitoring of plasmid incompatibility, based on a 262-kb dnaA-like replicon required for the brown pigmentation of the bacterium. Uptake of an incompatible construct induces its loss, hence resulting in white colonies. Accordingly, we could substantiate the in silico predictions about stable maintenance of dnaA-like plasmids and thereby functionally validate our approach of plasmid classification based on phylogenetic analyses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    37
    Citations
    NaN
    KQI
    []