Cerium Ammonium Nitrate-Mediated Access to Biaryl Lactones: Substrate Scopes and Mechanism Studies.

2021 
Herein we described an access to biaryl lactones from ortho-aryl benzoic acids via intramolecular O-H/C-H oxidative coupling with the commonly used cerium ammonium nitrate (CAN) as the one-electron oxidant under a thermal condition. The radical interrupting experiment suggested a radical process, while the kinetic isotope effect (KIE) showed that the C-H cleavage likely was not involved in the rate-determining step. Competitive reactions, especially the strikingly different ρ values of Hammett equations, indicated that the reaction rate was more sensitive to the electronic properties on the aryl moiety rather than the carboxylic moiety, which corresponded to the first single electron transfer (SET) step. In addition, the quite negative ρ values (-4.7) of the aryl moiety unveiled the remarkable electrophilic nature of the second intramolecular radical addition process, which was also consistent with product yields and regioselectivity. Moreover, control experiments disclosed that the single electron in the third step was also transferred to CeIV instead of molecular oxygen. Besides, the possible role of co-solvents trifluoroethanol (TFE) and its influences on the CeIV species were discussed. This work elucidated the possible mechanism by proposing the step that had more effects on the total reaction rate and the species that was responsible for the last single electron transfer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []