Revisiting structure and dynamics of preferential solvation of K(I) ion in aqueous ammonia using QMCF-MD simulation

2018 
Abstract Structure and dynamics of preferential solvation of K(I) ion in aqueous ammonia have been reinvestigated using ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) simulation. The average coordination number of the first solvation consists of 2 ammonia and 4 waters. The mean residence time is less than 2 ps confirming the rapid mobility of ligands. The distance evolution data shows the frequent of ligand exchanges. The second solvation shell shows a more labile structure. The NBO analysis of the first shell structure emphasizes that interaction of K(I)-H 2 O is stronger than K(I)-NH 3 . The Wiberg bond confirms a weak electrostatic of ion-ligand interaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    7
    Citations
    NaN
    KQI
    []