Unraveling the structural characteristics of lignin in hydrothermal pretreated fibers and manufactured binderless boards from Eucalyptus grandis
2014
Background: Eucalyptus grandis is one of the most abundant biomass from plantation in many parts of the world. The binderless board were manufactured from hydrothermal pretreated fibers of Eucalyptus wood and characterized for the chemical analyses and mechanical strengths in order to assess the mechanism of self-bonding. To make clear the self-bonding mechanism of these binderless boards, the structural characteristics of cellulolytic enzyme lignin (CEL) isolated from Eucalyptus wood, its hydrothermal pretreated fibers, and binderless boards were thoroughly investigated by chemical and spectroscopic methods. Results: The result revealed that hydrothermal pretreatment and hot pressing process could change cellulose crystalline structures by disrupting inter/intra hydrogen bonding of cellulose chains. During the hydrothermal pretreatment of Eucalyptus wood, acid-catalyzed cleavage of β-O-4′ linkages and ester bonds were the major mechanisms of lignin cleavage. This degradation pathway led to a more condensed lignin which has a high average molecular weight and more phenolic hydroxyl groups than the control. The hot pressing process resulted in the binderless boards with reduced lignin contents and decreased the glass transition temperature, thus making the lignin more accessible to the fiber surface. CEL isolated from the binderless boards showed an increased syringyl to guaiacyl propane (S/G) ratio but a lower molecular weight than those of the untreated Eucalyptus wood and the hydrothermal pretreated fibers. Conclusions: Based on the finding of this study, it is suggested that the combination of hydrothermal pretreatment and hot pressing process is a good way for conditioning hardwood sawdust for the production of binderless boards. The thermal softening of lignin, rich in phenolic hydroxyl groups, and increased condensed lignin structure contributed to the self-bonding formation of lignocellulosic materials.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
62
References
40
Citations
NaN
KQI