Considerations Of Integrating Computing-In-Memory And Processing-In-Sensor Into Convolutional Neural Network Accelerators For Low-Power Edge Devices

2019 
In quest to execute emerging deep learning algorithms at edge devices, developing low-power and low-latency deep learning accelerators (DLAs) have become top priority. To achieve this goal, data processing techniques in sensor and memory utilizing the array structure have drawn much attention. Processing-in-sensor (PIS) solutions could reduce data transfer; computing-in-memory (CIM) macros could reduce memory access and intermediate data movement. We propose a new architecture to integrate PIS and CIM to realize low-power DLA. The advantages of using these techniques and the challenges from system point-of-view are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []