Hybrid Models as Transdisciplinary Research Enablers

2020 
Abstract Modelling and simulation (M&S) techniques are frequently used in Operations Research (OR) to aid decision-making. With growing complexity of systems to be modelled, an increasing number of studies now apply multiple M&S techniques or hybrid simulation (HS) to represent the underlying system of interest. A parallel but related theme of research is extending the HS approach to include the development of hybrid models (HM). HM extends the M&S discipline by combining theories, methods and tools from across disciplines and applying multidisciplinary, interdisciplinary and transdisciplinary solutions to practice. In the broader OR literature, there are numerous examples of cross-disciplinary approaches in model development. However, within M&S, there is limited evidence of the application of conjoined methods for building HM. Where a stream of such research does exist, the integration of approaches is mostly at a technical level. In this paper, we argue that HM requires cross-disciplinary research engagement and a conceptual framework. The framework will enable the synthesis of discipline-specific methods and techniques, further cross-disciplinary research within the M&S community, and will serve as a transcending framework for the transdisciplinary alignment of M&S research with domain knowledge, hypotheses and theories from diverse disciplines. The framework will support the development of new composable HM methods, tools and applications. Although our framework is built around M&S literature, it is generally applicable to other disciplines, especially those with a computational element. The objective is to motivate a transdisciplinarity-enabling framework that supports the collaboration of research efforts from multiple disciplines, allowing them to grow into transdisciplinary research.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    135
    References
    3
    Citations
    NaN
    KQI
    []