Sub 2-μm macroporous silica particles derivatized for enhanced lectin affinity enrichment of glycoproteins.

2013 
A new, mechanically stable silica microparticle with macro-sized internal pores (1.6-μm particles with 100-nm pores) has been developed for chromatography. The particles are characterized by an extensive network of interconnected macropores with a high intraparticle void volume as observed by transmission electron microscopy (TEM). They are synthesized by an aerosol assembly technique called ultrasonic spray pyrolysis (USP). The particles have a high surface area for a macroporous material, ~200 m2/g, making them suitable for large biomolecular separations. To demonstrate their potential for bioseparations, they have been functionalized with lectins for affinity enrichment of glycoproteins. The material was derivatized with two lectins, Concanavalin A (Con A) and Aleuria aurantia lectin (AAL), and binding properties were tested with standard glycoproteins. The columns exhibited excellent binding capacities for microaffinity enrichment—Con A was able to bind 75 μg of a standard glycoprotein in a 50 × 1-mm column. Following initial tests, the lectin microcolumns were utilized for enrichment of glycoproteins from 1-μL volumes of blood serum samples, which was performed in triplicate for each lectin. The enriched serum fractions were subjected to side-by-side glycomic and glycoproteomic profiling analyses with mass spectrometry to show that the new particles offer excellent sensitivity for microscale analyses of precious biological sample materials. The unique combination of the macroporous architecture and small particle diameter suggests the material may have advantages for conventional modes of chromatographic separation of macromolecules in an ultrahigh-pressure liquid chromatography (UHPLC) format.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    35
    Citations
    NaN
    KQI
    []