Sulfated N-acetylglucosamino-glucuronopyranosyl-arabinopyranan from seafood Amphioctopus neglectus attenuates angiotensin-II prompted cardiac hypertrophy

2020 
Abstract Angiotensin converting enzyme (ACE) is a multifunctional enzyme involved in translation of angiotensin-I (AngI) to vasoconstrictor angiotensin-II (AngII). A sulfated N-acetylglucosamino-glucuronopyranosyl-arabinopyranan characterized as poly-[(2-methoxy-β-arabinopyranosyl)-(1 → 3)-(β-glucurono)-(1 → 4)-(2-acetamido-2-deoxy-3,6-di-O-sulfonato-β-glucopyranose)] was purified and reported first time from the edible portion of Amphioctopus neglectus and evaluated for various pharmacological properties. The polysaccharide exhibited potential ACE attenuation property (IC50 0.11 mg mL−1), whereas molecular docking simulations displayed its efficient binding at the ACE active site with lesser inhibitory constant (Ki) of 17.36 nM and binding energy (−10.59 kcal mol−1). The in-vitro analysis showed that the studied polysacharide attenuated AngII prompted cardiac hypertrophy at 50 μg mL−1 the cardiomyoblast cells, whereas 48% reduction in cellular surface area with extended viability could be correlated with anti-hypertrophic properties of the studied polysaccharide. The sulfated N-acetylglucosamino-glucuronopyranosyl-arabinopyranan purified from A. neglectus could function as a prospective functional lead against the pathophysiological conditions leading to hypertension.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    3
    Citations
    NaN
    KQI
    []